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1. A manufacturer produces sweets of length L mm where L has a continuous uniform
distribution with range [15, 30].

(a) Find the probability that a randomly selected sweet has a length greater than 24 mm.
@

These sweets are randomly packed in bags of 20 sweets,

(b) Find the probability that a randomly selected bag will contain at least 8 sweets with
length greater than 24 mm.
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(c) Find the probability that 2 randomly selected bags will both contain at least 8 sweets
with length greater than 24 mm.
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2. Atest statistic has a distribution B(25, p).
Given that
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(a) find the critical region for the test statistic such that the probability in each tail is as
close as possible to 2.5%.

@ |
(b) State the probability of incorrectly rejecting H, using this critical region. |
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3. [a) “Witite-thown two condtiions teisd T apenEe e bitomial Gkt by e | The number of houses sold by an estate agent follows a Poisson distribution, with a mean |
|

; S 2 X
Poisson distribution. of 2 per week
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@ (a) Find the probability that in the next 4 weeks the estate agent sells,

A machine which manufactures bolts is known to produce 3% defective bolts. The
machine breaks down and a new machine is installed. A random sample of 200 bolts is

taken from those produced by the new machine and 12 bolts were defective.

(i) exactly 3 houses,

(ii) more than 5 houses.

(b) Using a suitable approximation, test at the 5% level of significance whether or not | 5)
the proportion of defective bolts is higher with the new machine than with the old

machite. State your kypotheses clearly, The estate agent monitors sales in periods of 4 weeks. |
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(b) Find the probability that in the next twelve of these 4 week periods there are exactly
1,“') l“'b"‘ "n " IS N\‘ p ~ '\9 £ \o nine periods in which more than 5 houses are sold.
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5. The queueing time, X minutes, of a customer at a till of a supermarket has probability | |
density function | |
z k-x) 0<x<k
) ={32"
0 otherwise
(a) Show that the value of & is 4
@
(b) Write down the value of E(X).
1
'
(¢) Calculate Var(X).
@
(d) Find the probability that a randomly chosen customer’s queueing time will differ from
the mean by at least half a minute.
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. A bag contains a large number of balls.

65% are numbered 1
35% are numbered 2
A random sample of 3 balls is taken from the bag.

Find the sampling distribution for the range of the numbers on the 3 selected balls.
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7. The continuous random variable X has probability density function f(x) given by | I 8. Ina large restaurant an average of 3 out of every 5 customers ask for water with their meal.
1
e ‘ i A random sample of 10 customers is selected.
Ig 0 <x< 3 1 | 1
(a) Find the probability that !
1
% lcx<d ! (i) exactly 6 ask for water with their meal, }
tx= (ii) less than 9 ask for water with their meal.
1 x (5)
i 4<x<10 ,
‘ A second random sample of 50 customers is selected. 1
, 0 otherwise [ l (b) Find the smallest value of # such that '
P(X<n)> 0.9 !
) Sketch f(x) for 0 <x < 10
@ — ! @ | where the random variable X represents the number of these customers who ask for
water.
(b) Find the cumulative distribution function F(x) for all values of x. (3)
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